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Abstract. The generating functional of correlation functions for theXXZ spin chain is considered
in the thermodynamic limit. We derive a system of integro-difference equations that prescribe this
functional. On the basis of this system we establish the operator-valued Riemann–Hilbert problem
for correlation functions of theXXZ spin chain.

1. Introduction

It has been shown by Korepinet al that many important problems arising from an analysis of
correlation functions of quantum solvable models are reduced to classical inverse scattering
problems [1]. In particular, for theXXX spin chain, the generating functional of correlation
functions is represented by the Fredholm determinants [2], and a special correlation function,
the so-calledferromagnetic string formation probability(FSFP), is proved to be connected
with an operator-valued Riemann–Hilbert problem [3]. With the help of the solutions of this
problem one can compute the large-distance asymptotic form of the FSFP [4]. Physically, this
makes clear the probability of finding a ferromagnetic string of adjacent parallel spins for a
given value of the magnetic field in theXXX spin chain.

In this paper, we consider the spin-1
2 XXZ Heisenberg chain in the thermodynamic limit.

The Hamiltonian is defined by

HXXZ =
∑
n∈Z
(σ xn σ

x
n+1 + σyn σ

y

n+1 + cos 2ησ znσ
z
n+1− hσ zn ) (1.1)

whereσxn , σyn andσ zn are the Pauli matrices acting on thenth site andh is an external magnetic
field. The anisotropy cos 2η implies the critical regime. Any correlation function of the model
can be obtained by means of the generating functionalQ(m)(α) [5]. For example, a two-point
correlation function〈σ zmσ z1〉 is given by

〈σ zmσ z1〉 = 21m

∂2Q(m)(α)

∂2α

∣∣∣∣
α=0

− 4
∂Q(1)(α)

∂α

∣∣∣∣
α=0

− 1 (1.2)

with the lattice Laplacian defined by1mf (m) = f (m) − 2f (m − 1) + f (m − 2). This
generating functional is represented by the Fredholm determinants,

Q(m)(α) =
〈
vac
∣∣ det

(
1− V (m)/2π)∣∣vac

〉〈
vac
∣∣ det

(
1− (V (m)/2π)|α=0

)∣∣vac
〉 . (1.3)
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Here the kernel is of the form

V (m)(λ, µ) = sin 2η

sinh(λ− µ)

(
exp(α − ϕ3(λ) + ϕ4(µ))e

−1
1 (λ)e1(µ) + 1

sinh(λ− µ + 2iη)

− e−1
2 (λ)e2(µ) + exp(α − ϕ3(λ) + ϕ4(µ))

sinh(µ− λ + 2iη)

)
. (1.4)

From now on the indexm is omitted if unnecessary. The integration contour that appears in
the Fredholm determinants lies on the real axis [−3,3], where a boundary value3 is called
the Fermi energy and depends on the anisotropy parameterη and the magnetic fieldh. The
operatorse1(λ) ande2(λ) are defined by

e1(λ) =
(

sinh(λ + iη)

sinh(λ− iη)

)m
e−ϕ1(λ) e2(λ) =

(
sinh(λ + iη)

sinh(λ− iη)

)m
eϕ2(λ). (1.5)

The operatorsϕj (λ) (j = 1, . . . ,4) are bosonic quantum fields called thedual fields. They
are decomposed into the momentum and coordinate fields,

ϕj (λ) = pj (λ) + qj (λ) (j = 1, . . . ,4) (1.6)

whose commutation relations are

[pj (λ), pk(µ)] = [qj (λ), qk(µ)] = 0

[pj (λ), qk(µ)] = Ujkh(λ, µ) +Ukjh(µ, λ) (j, k = 1, . . . ,4)
(1.7)

with

U = −


1 0 1 0
0 1 0 1
0 1 1 1
1 0 1 1

 h(λ, µ) = log
sinh(λ− µ + 2iη)

i sin 2η
. (1.8)

Note that the dual fields are commutative: [ϕj (λ), ϕk(µ)] = 0 (j, k = 1, . . . ,4). They only
produce vacuum expectation values according to the vacuum states defined by

〈vac|vac〉 = 1 〈vac|qj (λ) = pj (λ)|vac〉 = 0 (j = 1, . . . ,4). (1.9)

A special correlation function FSFP for theXXZ spin chain is defined byP(m) =
Q(m)(−∞), wheremgives the length of a ferromagnetic string [5, 6]. In this case the expression
of the kernel (1.4) is reduced to a simple form and enables us to formulate the related operator-
valued Riemann–Hilbert problem in the same way as for theXXX spin chain [6]. Furthermore,
in the limit of strong magnetic fieldh→ hc = 4 cos2 η, the kernel is related to theτ -function
of the Painlev́e V equation [7]. On the basis of this fact we can evaluate any correlation
function of theXXZ spin chain under an external strong magnetic field. Similar results hold
in the asymmetricXXZ spin chain that is a non-Hermitian generalization of theXXZ spin
chain [8, 9].

The aim of the paper is to derive a system of integro-difference equations that prescribe
the generating functionalQ(m)(α) and to establish the associated operator-valued Riemann–
Hilbert problem. Wedo not take either the FSFP limit (α → −∞) or the strong magnetic
field limit (h → hc), and treat directly the kernel (1.4) that contains the dual fields with
four species. This kernel is not of the desired type; however, it can be transformed into an
integral operator that satisfies the integrable condition (see (2.7)). Thus the computation of
the generating functional can be reduced to the solution of operator-valued Riemann–Hilbert



Operator-valued Riemann–Hilbert problem for the XXZ spin chain 1353

problems. In section 2 we rewrite the kernel (1.4) and introduce some integral operators. In
particular, the resolvent is expressed by products of two vectors (see lemma 1). In section 3 a
system of integro-difference equations is derived. On the basis of this system we establish the
operator-valued Riemann–Hilbert problem associated with the generating functional (1.3) in
section 4. Section 5 is devoted to concluding remarks.

2. Integral operators

In this section we transform the kernel (1.4) into an integral operator that satisfies the integrable
condition (2.7) and introduce some useful integral operators.

Definition 1. We rewrite the kernel for the Fredholm determinant representation of the
generating functional (1.3) as

V (x, y) = i
∫ ∞

0

ds

x − y
4∑
j=1

aj (x|s)bj (y|s) (2.1)

where vectorsa(x|s) andb(x|s) are defined by

a(x|s) =
(

i(q − q−1)
qx − 1

x − q
)1/2



xm/2 exp

(
−iq

qx − 1

x − q s
)

x−m/2 exp

(
−iq

qx − 1

x − q s + α + ϕ1(x)− ϕ3(x)

)
x−m/2 exp

(
iq−1qx − 1

x − q s − ϕ2(x)

)
xm/2 exp

(
iq−1qx − 1

x − q s + α − ϕ3(x)

)


(2.2)

bt (x|s) =
(

i(q − q−1)
qx − 1

x − q
)1/2



−x−m/2 exp

(
iq−1qx − 1

x − q s
)

−xm/2 exp

(
iq−1qx − 1

x − q s − ϕ1(x) + ϕ4(x)

)
xm/2 exp

(
−iq

qx − 1

x − q s + ϕ2(x)

)
x−m/2 exp

(
−iq

qx − 1

x − q s + ϕ4(x)

)


.

(2.3)

The superscriptt indicates the transposition of a vector. The integration contour for variables
x, y runs anticlockwise on the unit circle:C : x = eiθ (−ψ < θ < 2π + ψ). The endpoints
are denoted byζ± = e±iψ . The dual fields still obey the commutation relations (1.7) with

h(x, y) = log

[
1

q − q−1

(
q

√
qx − 1

x − q
y − q
qy − 1

− q−1

√
x − q
qx − 1

qy − 1

y − q

)]
. (2.4)

The original kernel (1.4) is obtained by using the transformations

x = sinh(λ + iη)

sinh(λ− iη)
q = e2iη ψ = i log

sinh(3− iη)

sinh(3 + iη)
(2.5)
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and an identity that is valid for12π < η < π :∫ ∞
0

ds exp

(
−iq

qx − 1

x − q s + iq−1qy − 1

y − q s
)
= −i

(
q
qx − 1

x − q − q
−1qy − 1

y − q
)−1

. (2.6)

Here an extra factor that leaves the Fredholm determinants unchanged appears; however, it
can be ignored because it has no influence on the representation of the generating functional
(1.3). We remark that the vectorsa(x|s) andb(x|s) satisfy∫ ∞

0
ds

4∑
j=1

aj (x|s)bj (x|s) = 0. (2.7)

This relation is called theintegrable conditionand ensures that the kernel (2.1) is well defined
for anyx, y ∈ C. By virtue of this condition we can formulate the operator-valued Riemann–
Hilbert problem in section 4.

Hereafter some matrices that contain integral operators appear. We call them thematrix
integral operatorsand denote them by bold letters, except that ‘1’ indicates the product of the
delta-function and the unit matrix. The following convention for matrix integral operators is
adopted unless it causes confusion:

(EF )jk(x, y|s, t) =
∫
C

dz
∫ ∞

0
dr
∑
n

Ejn(x, z|s, r)Fnk(z, y|r, t). (2.8)

Definition 2. We introduce the vectorsα(x|s) andβ(x|s) via((
1− 1

2π
V

)
α

)
(x|s) = a(x|s)

(
β

(
1− 1

2π
V

))
(x|s) = b(x|s) (2.9)

and define the resolventR(x, y) through(
1− 1

2π
V

)(
1 +

1

2π
R

)
=
(

1 +
1

2π
R

)(
1− 1

2π
V

)
= 1. (2.10)

Note that one of these relations can be derived by letting(1 +R/2π) act on both sides of the
other relation from the left or the right. Thus(1− V/2π) and(1 +R/2π) are commutative.

Lemma 1. The resolvent is represented by

R(x, y) = i
∫ ∞

0

ds

x − y
4∑
j=1

αj (x|s)βj (y|s). (2.11)

Proof. The defining relation of the resolvent is rewritten as(1− V/2π)R = V . By using the
identity (x − y) = (x − z) + (z− y) this relation is deformed into

(x − y)R(x, y)− i

2π

∫
C

dz
∫ ∞

0
ds

4∑
j=1

aj (x|s)bj (z|s)R(z, y)

− 1

2π

∫
C

dz V (x, z)(z− y)R(z, y) = i
∫ ∞

0
ds

4∑
j=1

aj (x|s)bj (y|s). (2.12)

Move the second term in the left-hand side to the right-hand side and recall the defining relations
(2.9) and (2.10). The representation (2.11) is thus obtained. �
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Definition 3. We define the4× 4 matrix integral operators with variabless, t by

Ajk(s, t) = i
∫
C

dx

x
αj (x|s)bk(x|t) (2.13)

Bjk(s, t) = i
∫
C

dx

x
aj (x|s)βk(x|t) (j, k = 1, . . . ,4). (2.14)

Lemma 2. The integral operatorB(s, t) is the resolvent ofA(s, t). Namely,(
1− 1

2π
A

)(
1 +

1

2π
B

)
=
(

1 +
1

2π
B

)(
1− 1

2π
A

)
= 1. (2.15)

Proof. The action of(1− V/2π) onα(x|s)/x is computed as

1

x
α(x|s)− 1

2π

∫
C

dy

y
V (x, y)α(y|s) = 1

x
a(x|s) +

1

2π

∫
C

dy

(
1

x
− 1

y

)
V (x, y)α(y|s)

= 1

x

((
1− 1

2π
A

)
a

)
(x|s). (2.16)

By virtue of this relation we obtain

Ajk(s, t) = i
∫
C

dx

x
αj (x|s)

(
βk

(
1− 1

2π
V

))
(x|t)

= i
∫
C

dx βk(x|t)
(

1

x
αj (x|s)− 1

2π

∫
C

dy

y
V (x, y)αj (y|s)

)
= i

∫
C

dx

x
βk(x|t)

((
1− 1

2π
A

)
a

)
j

(x|s)

=
((

1− 1

2π
A

)
B

)
jk

(s, t) (j, k = 1, . . . ,4). (2.17)

This means that(1− A/2π)B = A and therefore implies the lemma. The proof has been
completed. �

Applying lemma 2 to (2.16) we can obtain another representation ofa(x|s)/x:

1

x
a(x|s) = 1

x

((
1 +

1

2π
B

)
α

)
(x|s)− 1

2π

∫
C

dy

y
V (x, y)

((
1 +

1

2π
B

)
α

)
(y|s). (2.18)

We remark that the kernelV (x, y) commutes withA(s, t) andB(s, t) because the variables
are different. This relation plays an important role in the next section.

3. Integro-difference equations

In order to make clear the properties of the unknown vectorsα(m)(x|s) andβ(m)(x|s), we
compute their dependences onm andψ , and derive a system of integro-difference equations
for them. This helps us to formulate an operator-valued Riemann–Hilbert problem for the
XXZ spin chain.

Lemma 3. The vectorsα(m)(x|s) and β(m)(x|s) obey the following integro-difference
equations with respect tom:

α(m+1)(x|s) =
((√

xγ1 +
1√
x

(
1− 1

2π
A(m+1)

)
γ2

(
1 +

1

2π
B(m)

))
α(m)

)
(x|s) (3.1)

β(m+1)(x|s) =
(
β(m)

(√
xγ2 +

1√
x

(
1− 1

2π
A(m)

)
γ1

(
1 +

1

2π
B(m+1)

)))
(x|s) (3.2)
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whereγ1 andγ2 are4× 4 diagonal matrices

γ1 = 1
2(1 +σ z ⊗ σ z) γ2 = 1

2(1− σ z ⊗ σ z). (3.3)

Proof. By the definitions ofa(m)(x|s) andb(m)(x|s) their dependences onm are

a(m+1)(x|s) =
(√

xγ1 +
1√
x
γ2

)
a(m)(x|s) (3.4)

b(m+1)(x|s) = b(m)(x|s)
(√

xγ2 +
1√
x
γ1

)
. (3.5)

Similarly the kernelV (m+1)(x, y) is connected withV (m)(x, y) as

V (m+1)(x, y) =
√
x

y

(
V (m)(x, y)− i

∫ ∞
0

ds

x
b(m)(y|s)γ2a

(m)(x|s)
)
. (3.6)

Using these recursion relations we obtain

α(m+1)(x|s)− a(m+1)(x|s) = 1

2π
(V (m+1)α(m+1))(x|s)

=
√
x

2π

∫
C

dy√
y
V (m)(x, y)α(m+1)(y|s)

− 1

2π
√
x
(A(m+1)γ2a

(m))(x|s). (3.7)

It thus follows that
1√
x
α(m+1)(x|s)− 1

2π

∫
C

dy√
y
V (m)(x, y)α(m+1)(y|s)

= 1√
x
a(m+1)(x|s)− 1

2πx
(A(m+1)γ2a

(m))(x|s)

= γ1a
(m)(x|s) +

1

x

((
1− 1

2π
A(m+1)

)
γ2a

(m)

)
(x|s)

=
((

1− 1

2π
V (m)

)
γ1α

(m)

)
(x|s)

+
1

x

((
1− 1

2π
A(m+1)

)
γ2

(
1 +

1

2π
B(m)

)
α(m)

)
(x|s)

− 1

2π

∫
C

dy

y
V (m)(x, y)

((
1− 1

2π
A(m+1)

)
γ2

(
1 +

1

2π
B(m)

)
α(m)

)
(y|s).

(3.8)

In the last equality the relation (2.18) is used. Thus the integro-difference equation (3.1) is
obtained by removing the action of(1− V (m)/2π). In the same way (3.2) can be derived.�

Lemma 4. The derivatives of the vectorsα(x|s) andβ(x|s) with respect toψ are

∂ψα(x|s) = − 1

2π

∑
ε=±

(
ζε

x − ζεα(ζε|s)
∫ ∞

0
dt

4∑
j=1

αj (x|t)βj (ζε|t)
)

(3.9)

∂ψβ(x|s) = − 1

2π

∑
ε=±

(
ζε

ζε − xβ(ζε|s)
∫ ∞

0
dt

4∑
j=1

αj (ζε|t)βj (x|t)
)
. (3.10)
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Proof. We show the differential equation (3.9). The other equation (3.10) can be derived in
the same way. According to the identity

−i∂ψ

∫
C

dx f (x) =
∑
ε=±

ζεf (ζε) (3.11)

the differentiation of (2.9) is computed as

∂ψα(x|s)− i

2π

∑
ε=±

ζεV (x, ζε)α(ζε|s)− 1

2π
(V ∂ψα)(x|s) = 0. (3.12)

By using the resolvent this is reduced to

∂ψα(x|s) = i

2π

∑
ε=±

ζεR(x, ζε)α(ζε|s). (3.13)

Because of lemma 1 we obtain (3.9). �
The following lemma is not directly related to the formulation of operator-valued

Riemann–Hilbert problems but is useful for evaluating the large-m asymptotic form of the
generating functionalQ(m)(α).

Lemma 5. The Fredholm determinantdet(1 − V (m)/2π) satisfies the following recursion
relation with respect tom:

det
(
1− V (m+1)/2π

)
det

(
1− V (m)/2π) = exp tr log

(
1 +

1

2π
γ2B

(m)

)
(3.14)

where the trace for matrix integral operators is defined by

tr(Kn) =
∫ ∞

0

n∏
k=1

dsk
4∑

j1,...,jn=1

Kj1,j2(s1, s2) · · ·Kjn,j1(sn, s1). (3.15)

Proof. Due to the relation (3.6) it follows that

δ(x − y)− 1

2π

√
y

x
V (m+1)(x, y)

= δ(x − y)− 1

2π

(
V (m)(x, y)− i

∫ ∞
0

ds

x

(
β(m)

(
1− 1

2π
V (m)

))
(y|s)γ2a

(m)(x|s)
)

=
((

1 +
1

2π
G(m)

)(
1− 1

2π
V (m)

))
(x, y) (3.16)

where

G(m)(x, y) = i
∫ ∞

0

ds

x
β(m)(y|s)γ2a

(m)(x|s). (3.17)

Based on this recursion relation the Fredholm determinants of both sides are given by

det

(
1− 1

2π
V (m+1)

)
= det

(
1 +

1

2π
G(m)

)
det

(
1− 1

2π
V (m)

)
. (3.18)

Here we note that
√
y/x in the left-hand side has no influence on the Fredholm determinant.

Take the logarithm of det(1 +G/2π):

log det

(
1 +

1

2π
G

)
= tr log

(
1 +

1

2π
G

)
=
∞∑
n=1

(−1)n−1

n(2π)n
tr(Gn). (3.19)
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The trace ofGn can be expressed in terms ofB:

tr(Gn) = in
∫
C

n∏
k=1

dxk
xk

∫ ∞
0

n∏
k=1

dsk

×
∑

j1,...,jn=2,3

aj1(x1|s1)βj1(x2|s1)aj2(x2|s2)βj2(x3|s2) · · · ajn(xn|sn)βjn(x1|sn)

=
∫ ∞

0

n∏
k=1

dsk
∑

j1,...,jn=2,3

Bj1,jn (s1, sn)Bj2,j1(s2, s1) · · ·Bjn,jn−1(sn, sn−1)

= tr((γ2B)
n). (3.20)

Equation (3.18) with (3.19) and (3.20) proves the lemma. �

4. Operator-valued Riemann–Hilbert problem

In this section we establish the operator-valued Riemann–Hilbert problem associated with the
generating functional (1.3). Let us consider the 4×4 matrix integral operatorχ(m)(z|s, t) that
has the following properties. Hereafter not only the indexm but also variabless, t are omitted
if unnecessary.

(a) χ(z) is analytic forz ∈ C\C.
(b) Let χext(z) andχint(z) be the limits ofχ(z) from outside and inside of the unit circle,

respectively. It then follows that

χext(z) = χint(z)L(z) (z ∈ C) (4.1)

where theconjugation matrixL(z) is given by

L(z) = 1− l(z) ljk(z|s, t) = aj (z|s)bk(z|t) (j, k = 1, . . . ,4). (4.2)

(c) χ(∞) = 1.

We point out that the conjugation matrixL(z) is the 4×4 matrix integral operator with variables
s, t . For example, the condition (4.1) means

(χext)jk(z|s, t) =
∫ ∞

0
dr

4∑
n=1

(χint)jn(z|s, r)Lnk(z|r, t) (j, k = 1, . . . ,4). (4.3)

The connection of the operator-valued Riemann–Hilbert problem (a)–(c) to lemmas 1–5
in the previous section is summarized in the following theorem.

Theorem. Suppose that the solution of the Riemann–Hilbert problem (a)–(c) exists and is
unique. Define new vectors by

α(z|s) =
∫ ∞

0
dt χ(z|s, t)a(z|t) β(z|s) =

∫ ∞
0

dt b(z|t)χ−1(z|t, s) (4.4)

and introduce the integral operatorsA(s, t) andB(s, t) as definition 3 again. Then they satisfy
lemmas 2–4.

Proof. We start from the proof of lemma 2. Using the definition ofA(s, t) and thecanonical
integral representationof χ(z) (see [1, 3, 6])

χ(z) = 1 +
1

2π i

∫
C

dζ

ζ − zχint(ζ )l(ζ ) (4.5)
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we obtain

χ(0) = 1− i

2π

∫
C

dz

z
χint(z)l(z) = 1− 1

2π
A. (4.6)

Sincel2(z) = 0 (which is clear from the integrable condition (2.7)) there exists an inverse of
the conjugation matrix:L−1(z) = 1 + l(z). The canonical integral representation ofχ−1(z) is
thus given by

χ−1(0) = 1 +
i

2π

∫
C

dz

z
l(z)χ−1

int (z) = 1 +
1

2π
B. (4.7)

The identityχ(0)χ−1(0) = χ−1(0)χ(0) = 1 corresponds to lemma 2.
Let us compute the integro-difference relation ofχ(m)(z) with respect tom and prove

lemma 3. We introduce the following integral operator:

Ψ(m)(z) = χ(m)(z)(γ1 + z−mγ2). (4.8)

This obeys

Ψ(m)
ext (z) = Ψ(m)

int (z)L0(z) (z ∈ C) (4.9)

with the conjugation matrix

L0(z) = (γ1 + zmγ2)L
(m)(z)(γ1 + z−mγ2). (4.10)

From the definitions ofa(m)(z), b(m)(z) andL(m)(z), we see thatL0(z) is independent ofm.
Hence applying Liouville’s theorem we have

Ψ(m+1)(z)(Ψ(m)(z))−1 = γ1 +
1

z
χ(m+1)(0)γ2(χ

(m)(0))−1 (4.11)

which implies

χ(m+1)(z)

(√
zγ1 +

1√
x
γ2

)
=
(√

zγ1 +
1√
x
χ(m+1)(0)γ2(χ

(m)(0))−1

)
χ(m)(z). (4.12)

By lettinga(m)(z|s) act on this relation from the right the integro-difference equation (3.1) is
derived. Similarly (3.2) is obtained. Thus lemma 3 has been proved.

We show lemma 4. In the same way as for the FSFP case [6] and the impenetrable Bose
gas case [10], in the neighbourhood ofC, the integral operatorχ(z) can be decomposed into

χ(z) = χ̂(z)χ0(z) (4.13)

whereχ̂(z) is a single-valued, invertible and analytic in the neighbourhood ofC. χ0(z) is
represented by

χ0(z) = 1 +
i

2π
log

z− ζ−
z− ζ+

l(z). (4.14)

Sincel2(z) = 0 its logarithm-derivative is computed as

∂ψχ0(z)χ
−1
0 (z) = − 1

2π

∑
ε=±

ζε

z− ζε l(z). (4.15)

Due to this relation and Liouville’s theorem the logarithm-derivative ofχ(z) is written as

∂ψχ(z)χ
−1(z) =

∑
ε=±

1

z− ζεXε (4.16)



1360 Y Fujii and M Wadati

with the coefficientX±,

X± = lim
z→ζ±

(z− ζ±)χ̂(z)∂ψχ0(z)χ
−1
0 (z)χ̂−1(z)

= − ζ±
2π
χ̂(ζ±)l(ζ±)χ̂−1(ζ±)

= − ζ±
2π
χ(ζ±)l(ζ±)χ−1(ζ±). (4.17)

By definitions ofα(z|s) andβ(z|s) the elements ofX± are expressed by

(X±)jk(s, t) = − ζ±
2π
αj (ζ±|s)βk(ζ±|t) (j, k = 1, . . . ,4). (4.18)

Let χ(z) act on (4.16) from the right and use this representation ofX±. The differential
equation (3.9) is thus obtained. Similarly (3.10) can be derived. The proof of the theorem has
been completed. �

As a consequence of the Riemann–Hilbert problem (a)–(c) lemmas 1 and 5 certainly hold.
On the basis of these lemmas we can evaluate the large-m asymptotic behaviour of correlation
functions for theXXZ spin chain.

5. Concluding remarks

In this paper we have derived a system of integro-difference equations that prescribe
the generating functional of correlation functions and have established an operator-valued
Riemann–Hilbert problem for theXXZ spin chain. It can be easily checked that, in the limit
α→−∞, our problem reduces to the problem associated with the FSFP obtained in [6]. We
are in a position to evaluate the long-distance asymptotic behaviour of any correlation function
for theXXZ spin chain. In a forthcoming publication our Riemann–Hilbert problem will be
used to compute the large-m asymptotic form of the generating functional.

At the free-fermionic pointη = 3π/4 theXXZ spin chain is reduced to theXXO model.
The FSFP of theXXO model is known to be connected with a Riemann–Hilbert problem
whose conjugation matrix is not an integral operator [11]. Its large-m asymptotic form is
computed as follows:

PXXO(m) ∼
(

1
4(h + 2)

)m2/2
(5.1)

whereh is the magnetic field. It is interesting to reproduce the same result from our Riemann–
Hilbert problem by taking the limitα → −∞ andη→ 3π/4. Furthermore, we can evaluate
any correlation function for theXXO model.

Operator-valued Riemann–Hilbert problems appear in several subjects, apart from the
computation of correlation functions of quantum solvable models. For example, it is well
known that the classical inverse problem for integrable equations in 2 + 1 dimensions (Davey–
Stewartson, KP, etc) can be expressed as an operator-valued Riemann–Hilbert problem. The
investigation of operator-valued Riemann–Hilbert problems is thus important and interesting
from the standpoint of not only physics but also mathematics.
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